140 GREEN RIVER BASIN

09319000 EPHRAIM TUNNEL NEAR EPHRAIM, UT (Transmountain diversion)

LOCATION.--Lat $39^{\circ}19^{\circ}47^{\circ}$, long $111^{\circ}25^{\circ}51^{\circ}$, in $SE^{1}/_{4}SE^{1}/_{4}$ sec. 14, T. 17 S., R. 4 E., Sanpete County, Hydrologic Unit 14060009, at east tunnel portal, 9.0 mi east of Ephraim.

PERIOD OF RECORD.--September 1949 to current year. Monthly discharge only for September 1949 to September 1960; figures of daily discharge available in Salt Lake City District Office, Geological Survey. Seasonal records only since October 1971.

GAGE.--Water-stage recorder and masonry control. Datum of gage is 9,694.9 ft above sea level. (Levels by U.S. Geological Survey, Topographic Division.)

REMARKS.--Records poor. Tunnel diverts from Cottonwood Creek drainage in Colorado River Basin to San Pitch River in the Great Basin.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $142 \text{ ft}^3/\text{s}$, June 6, 1964, gage height, 5.43 ft; no flow at times in some years.

		DISCHARGE	, CUBIC	C FEET PER		WATER YE MEAN VA		ER 2000 TC) SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							.01	.51	e40	e4.8	.63	.09
2							e.10	.80	e36	4.1	.60	.07
3							e.22	e.62	e30	4.4	1.2	.07
4							e.30	e.54	e24	4.0	.81	.06
5							.21	e.49	e22	e4.4	.52	.06
6							.08	.57	22	e4.6	.46	.06
7							.07	.96	e21	e3.8	.41	.08
8							.07	1.4	21	e4.4	.35	.08
9							.04	e2.6	e20	e3.7	.39	.08
10							.01	e6.0	e17	e3.3	.37	.08
11							.00	e12	e16	e3.0	.26	.08
12							.00	e15	e15	e2.7	.20	.07
13							.00	e15	e13	e2.5	.36	.07
14							.00	e28	11	e2.6	.35	.08
15							.01	e50	e9.7	e2.8	.18	.15
16							.21	e70	9.3	e2.2	.14	.14
17							.51	e72	e8.8	e2.1	.11	.14
18							.38	e56	e8.4	e1.8	.09	.12
19							.11	64	e7.6	e1.6	.07	.11
20							.02	66	e7.3	e1.2	.08	e.10
21							.00	e48	7.0	e1.6	.08	e.11
22							.00	e50	6.6	e1.3	.06	e.10
23							e.10	e54	6.2	e1.0	.06	e.09
24							e.50	e53	e6.0	e.76	.07	e.08
25							e1.4	e53	e5.6	e.82	.07	e.08
26							e1.1	e55	5.8	e.92	.09	e.07
27							e.40	e54	5.4	e1.0	.09	e.06
28							e.20	e50	4.8	e1.0	.10	e.07
29							.07	e52	4.8	e.90	.11	e.08
30							.15	e54	e5.6	e.80	.12	e.06
31								e44		.73	.11	
TOTAL							6.27	1029.49	416.9	74.83	8.54	2.59
MEAN							. 21	33.2	13.9	2.41	.28	.086
MAX							1.4	72	40	4.8	1.2	.15
MIN							.00	.49	4.8	.73	.06	.06
AC-FT							12	2040	827	148	17	5.1

e Estimated